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Abstract—In a multi-agent system (MAS), conventions serve
as an effective mechanism to reduce frictions among agents
and hence solve coordination problems. Convention emergence
studies how agents’ behavior patterns give rise to conventions
and how efficiently a convention forms. In a networked MAS, the
question focuses on how conventions can arise when the agents’
positions are constrained. In this paper, we investigate convention
emergence under the multi-player synchronous interaction model
in networked MASs. In particular, we focus on the scenario that
the agents is not informed the actions played by other agents, and
the only information agents can perceive is whether an interaction
is success or not. To facilitate the emergence of conventions,
we propose a novel approach, namely Win-Stay-Lose-Learn
(WSLL), to solve the problem of no observation and shorten
the action transformation time when convention seeds conflict
among agents. We conduct experiments to verify the robustness
and effectiveness of our proposed method, experimental results
show that our method outperforms other baseline approaches in
terms of convergence speed under various circumstances.

Index Terms—convention emergence, coordination, networked
MASs, reinforcement learning

I. INTRODUCTION

Social conventions, such as driving on a particular side of
the road and using the same channel for message dissemination
in wireless sensor networks, is an effective mechanism to
achieve coordination in both human society and multi-agent
systems (MASs). In MAS research, a convention is usually
defined to be “a social law that restricts the agents behavior
to one particular strategy [1]”. To introduce conventions into
MASs, there are two lines of approaches: the prescriptive
approach [2]–[4] and the emergence approach [5]–[7]. While
the former one assumes that a priori existence of conventions,
the latter one addresses conventions as the natural result of
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local interactions among agents and is thus more desirable for
distributed MASs [8].

Since the early works [1], [9], one main research question of
the emergence approach has been: what leads to the efficient
emergence of conventions? To date, a number of mechanisms
that can be further categorized into two classes: the spreading-
based mechanism and the learning-based mechanism, are pro-
posed. The spreading-based mechanisms exquisitely specify
how individual agents should behave to spread the conven-
tion seeds, and usually equip agents with the capability of
observation and imitation from the local neighborhoods [7],
[9], [10]. Thus, this type of mechanisms tend to have strength
in the particular type of scenarios which they are designed
for. On the other hand, the learning-based (in particular,
reinforcement learning-based) mechanisms model the local in-
teractions among agents to be coordination games, and assume
agents to independently learn from trial-and-error [11]–[13].
Therefore, the learning-based mechanisms in nature should be
applicable to a much wider domain scenario, particularly in
which observation and imitation are not feasible.

Researches have studied convention emergence under var-
ious interaction models. The interaction model can be cat-
egorized as the asynchronous interaction model and the syn-
chronous interaction model based on the number of agents par-
ticipated in interactions during each iteration, the interactions
happened between only one pair or group agents during each
iteration under the asynchronous interaction model [1], [7],
[10], where happened among all agents under the synchronous
interaction model [10]–[12]. The interaction model can also be
categorized into the 2-player interaction model [6], [12], [14]
and the multi-player interaction model [10], [11], [15], [16]
based on the number of agents involved in an interaction.

In MASs, agents are not always able to observe or imitate



the actions of others due to constraints and costs on the
interaction channel. It is therefore important to take into
considerations of such constraints when modeling interac-
tions. Mihaylov, Tuyls and Nowé proposed Win-Stay Lose-
probabilistic-Shift(WSLpS) and applied it to various interac-
tion models and scenarios [10]. However, the WSLpS plays
a poor performance when agents can not observe the actions
of their neighbors. Moreover, when the number of available
actions become large, it always fails to establish conventions
for agents blindly search for new actions. Learning-based
methods do not rely on the agents’ ability of observation,
agents interact with others and learn the utility of each action
based on the feedback reward, however, agents may stay at
one particular action for a long time due to adhering to their
learning experiences when convention seeds conflict, such phe-
nomenon also called sub-conventions which has been studied
by some researches [17], [18]. In this paper, we integrate the
advantages of ‘Win-Stay’ and reinforcement learning to tackle
the problems discussed above. More specifically, we harness
the power of reinforcement learning to solve the problem of
no observation and shorten the action transformation time by
resetting the agents’ learning experiences and combining the
idea of ‘Win-Stay’.

The remainder of the paper is organized as follows. We
review the related work in the next section. Section 3 explains
some basic concepts about convention emergence problem
and introduces the scenario we studied. The proposed method
will be interpreted in Section 4. In Section 5, we present
the experimental results. Finally, we make our conclusion in
Section 6.

II. RELATED WORK

Conventions, as an effective mechanism to regulate agents’
behaviors, have attached a wide range of attention in MASs.
Methods for convention emergence through agents’ local inter-
actions have been studied for many years. One line of method
for convention emergence is the spreading-based method,
Shoham and Tennenholtz introduced the convention emer-
gence problem into MASs [9], they proposed four basic types
of strategy update rules and showed that the external majority
(EM) strategy performs best among all these strategies, later,
they proposed Highest Cumulative Reward (HCR) strategy
and modeled the agents’ interactions as coordination games.
Delgado proposed generalized simple majority (GSM) rule,
agents adopt an action with a probability based on the action
distribution of their neighbors [7]. More recently, Mihaylov,
Tuyls and Nowé proposed WSLpS for various interaction
models, agents maintain their current strategies when they win,
and with a probability shift their strategies when they lose [10].
Another line for convention emergence is the learning-based
method, Sen and Airiau proposed social learning framework
and equipped agents with reinforcement learning algorithm,
they showed that conventions can successfully emergence
through agents’ synchronous pairwise learning [12], later, this
work is extended by lots of researches by taking consideration

of network topologies [6], [17], [19] or other interaction
models [11], [13], [15].

There are some researches that combined the learning-based
method with other mechanisms for convention emergence.
Villatoro, Sabater-Mir and Sen introduced two kinds of social
instruments: rewiring and observation, to tackle the effect of
subconvention emergence, and hence facilitate the emergence
of global conventions [18]. Yu et al. proposed a hierarchical
learning framework, subordinate agents report their interaction
information to their corresponding supervisors, supervisors
gather these information and interchange it with other super-
visors to generate guide policies [20]. More recently, Wang et
al. deployed teacher-student mechanism on top of the learning
method to accelerate the emergence of language conventions
[8]. Our research goal in this paper is to combine the idea
of ‘Win-Stay’ and reinforcement learning to facilitate the
emergence of conventions under the multi-player synchronous
interaction model.

III. PRELIMINARIES

In this section, we explicate some basic concepts and
formalize the scenario we studied in this paper. The notation
we used in this paper has been summarized in Table I

TABLE I
SUMMARY OF NOTATION

Notation Description
A available action set
|A| number of available actions
α learning rate
ε exploration rate
Qi the Q table of agent i
N(i) agent set of i’s neighbors
R the sum of rewards in an iteration
γ the threshold value of win
β the ratio of successful interactions in an iteration

Definition 1 (Convention). A social law that restricts the
agents behavior to one particular strategy is called a (social)
convention. [1]

A typical example used by existing literatures is the scenario
of ‘rules of the road’, when we drive a car on a road, there are
need a rule specifies which side to drive to avoid collision with
other cars, quite evidently, no matter which side is specified,
the traffic order can be ensured, therefore, the rule of ‘drive on
the left side’ or ‘drive on the right side’ can both be regarded
as a convention.

Convention Emergence Framework: The scenario we
studied in this paper given rise to conventions under the multi-
player synchronous interaction model in networked MASs.
The interaction process is given by Algorithm 1. The in-
teraction between agents is modeled as a 2-player-m-action
pure coordination game, agents get a +1 payoff when they
play a same action (successful interaction), otherwise, they
are punished with a −1 payoff. There are m Nash equilibria
in a 2-player-m-action pure coordination game. In this paper,
particularly, we focus on the scenario that agents can not



inform the actions played by their neighbors, whereas the only
information agents can perceive is whether an interaction is
successful. A typical scenario under this assumption is [10]:
In a sensor network, nodes coordinate on a same channel
for messages dissemination; By using protocols such as Time
Division Multiple Access, all nodes interact and update their
actions at every time steps, nodes can determine whether an
interaction is successful or not according to the messages
received.

Algorithm 1 Multi-player synchronous interaction model
INPUT Maximum iterations T

for each agent i do
initializes a random action ai

end for
for each iteration t ∈ {1, 2 · · ·T} do

for each agent i do
for each agent j ∈ N(i) do

agent i plays coordination game with j and
receives reward rj

end for
end for
for each agent i do

updates its action ai using a certain method
end for

end for

Reinforcement Learning and Rewards: Reinforcement
Learning (RL) has shown to be suitable for convention emer-
gence. Q-learning, a standard RL algorithm, is well adopted
[21]. The decision update rule of Q-learning used in a conven-
tion emergence-context (under the pure coordination game) is
shown in (1). Agents learn the utility of each action based
on the reward from each iteration. Under the multi-player
synchronous interaction model, agents interact with all their
neighbors in an iteration. Therefore, the reward is defined as
the sum of payoffs from each bilateral interaction.

Qt(a) = (1− α)×Qt−1(a) + α×R (1)

IV. WIN-STAY-LOSE-LEARN

We present the action update method Win-Stay-Lose-Learn.
This method integrates the idea of ‘Win-Stay’ and RL. A
sketch of WSLL is given by Algorithm 2. There are two parts
in WSLL, the first part is that agents maintain their current
strategies and reset their learning experiences when they win;
the second is that agents learn the utilities of their current
actions when they lose.

Intuitively, an agent should maintain its current strategy for
coordination when its action is consistent with most of its
neighbors. As the scenario formalized above, agents can not
observe the actions of their neighbors. Instead, the agents may
only know how popular their current actions are among their
neighbors based on the number of successful interactions in
each iteration. In this case, the meaning of ‘win’ in WSLL is
the ratio of successful interactions in one iteration greater than

Fig. 1. Subconvention

a threshold value γ. We use β to denote the ratio of successful
interactions and we will study how γ influences the emergence
of conventions in the experimental section.

Resetting the learning experience is another main opera-
tion that agents should perform when they ‘win’. The main
advantage of this setting is that agents can quickly shift their
strategies when they see conflict. Without resetting the learning
experience, the agents may take a long time to fix their learning
experiences by receiving negative rewards toward their current
actions or sometimes even fail to build conventions. Agents
also take a small probability to select a new action (also called
exploration) when γ ≤ β < 1 to prevent the emergence of sub-
conventions. A typical case is shown in Fig. 1, if the threshold
value γ is less than 0.75, all the eight agents are in the state of
‘win’. However, the global convention fails to emergence as
that state is stable if agents do not explore. In this case, agents
choose a new action with a small probability when γ ≤ β < 1
will help to escape from that state. Take the scenario of
Fig. 1 as an example and assume α = 0.5, if the agent i
choose a new action 1 in a certain iteration, the state of i and
N(i)− {j} all changed from ‘win’ to ‘lose’ in that iteration,
their corresponding Q tables are updated as Qi(1) = −1 and
QN(i)−{j}(0) = −0.5. Therefore, i and N(i)−{j} will select
action 0 and 1 respectively in the next iteration. These agents
will still ‘lose’ in the second iteration. However, the Q-tables
of these agents will update as Qi(1) = −1, Qi(0) = −2
and QN(i)−{j}(0) = QN(i)−{j}(1) = −0.5, the agents of
N(i)−{j} will choose a random action in the third iteration.
The only stable state of the system is that all the agents play
a same action. Therefore, it is necessary for agents to select
a new action with a small probability even their actions are
consistent with most of their neighbors. This case also shows
the advantage of resetting the learning experience when agents
are in the state of ‘win’, in the above simulation process, we
assume the initialized Q values of all agents toward each action
are equal to 0, however, the Q values of the agents’ current
actions are always largest among all available actions if not
reset the learning experience, therefore, it will take a long time
for agents to fix their learning experiences. It is easy to know
with the number of available actions increased, the probability
of forming the phenomenon like Fig. 1 is decreased, so we
set the explore probability decreased along with the number
of available actions increased.



Algorithm 2 WSLL

INPUT action ai of agent i of current iteration, vector ~Ri

containing the rewards from each neighbors.
OUTPUT the new action ai of agent i for next iteration.
R =

∑
j∈N(i) rj

if β ≥ γ then
Reset Qi

rnd ← generate Random Number ∈ (0, 1)
if rnd < ε/ |A| and β < 1 then

ai ← choose Random a ∈ A− {ai}
else

ai ← ai
end if

else
Qt

i(ai) = (1− α)×Qt−1
i (ai) + α×R

ai ← argmaxQt
i(ai)

end if

V. EXPERIMENTAL STUDY

We firstly investigate the influence of γ on convention
emergence, then we compare the performance of our proposed
method with other baseline approaches under various settings.
Unless otherwise specified, we take the following settings by
default: 90% as the criterion of convention emergence, 100
agents as population size, Scale-free network with 3 as power
law exponent, the number of available actions is set as 5,
maximum iterations is set as 5000 in each simulation, all
results are averaged over 500 simulation runs, the learning
rate α is set as 0.3, the exploration rate ε is set as 0.1, the
baseline methods and their settings are as below:
Win-Stay Lose-probabilistic-Shift (WSLpS): The shift prob-
ability is set as 0.8 which is optimal for multi-player syn-
chronous interaction model as suggested by the authors.
Q-learning (Q): The learning rate is set as 0.3 and the
exploration rate is set as 0.1.
Collective learning(CL): Q-learning as the learning strategy,
the learning rate and exploration rate is same as Q-learning,
global exploration as the exploration mode, majority voting as
the ensemble method. We mention that the authors assumed
the common observation in their first work [11]; however, they
eliminate this assumption in their follow-up research [15].

A. The influence of γ on convention emergence

In this subsection, we investigate the influence of γ on
convention emergence, the questions we main concerned are
what is the range of γ helps to establish convention and what
factors will influence it. For we take the ratio of successful
interactions as the criterion of ‘win’, one major factor that will
directly affect the expectation of successful interactions is the
number of available actions, the expectation is 1

|A| in the totally
stochastic condition, there should be less agents play the same
action with the focal agent when the number of available
actions increased, therefore, we investigate the influence of
γ on convention emergence by varying the |A| as 5, 8, 10, 12.
Fig. 2 represents the experimental results, the x−axis is value

of γ and the y−axis indicates the corresponding convergence
time steps, the outlier value are not displayed for legibility.
Each experiment is conducted under two regular networks
which have 15 and 20 fixed degree separately, this setting
makes each agent have a same circumstance, we also conduct
each experiment under two scale-free network which the
degree of nodes follow a pow-law distribution, this setting
helps to vary the circumstance of each agent, the power law
exponent we choose are 3 and 5. Firstly, we can observe
that our approach have a robust performance under various
circumstances, convention can successfully emergence under
a wide range value of γ in all experiments, more precisely,
the performance of WSLL under each |A| is very robust when
0.3 ≤ γ ≤ 0.6. Secondly, the valid value of γ left shift along
with |A| increased, we hypothesise that this phenomenon may
due to the expectation of successful interactions in random
case decreased along with the |A| increased, therefore, a small
ratio can be seen as ‘win’ compared to a small expectation
of successful interactions. Thirdly, the optimal value of γ
for convention emergence is always 2 ∼ 3 times 1

|A| , we
conjecture it may due to the agents can explicitly distinguish
the majority and minority of their current actions and the
processes of ‘Stay’ and ‘Learn’ are balanced under such value.
In the next subsections, we compare WSLL with other baseline
methods under various settings and choose 0.5 as the threshold
value of win.

(a) |A| = 5 (b) |A| = 8

(c) |A| = 10 (d) |A| = 12

Fig. 2. The influence of γ on convention emergence under different available
actions

B. Convention emergence under different available actions

We test the effectiveness of WSLL under the settings of
different available actions by varing the |A| as 2, 5, 8, 10 and
compare it with other three methods. Fig. 3 presents the results
of different approaches establish conventions, each bar repre-
sents the averaged convergence time of each approach and the
black mark of each bar indicates the corresponding standard
error, besides, we randomly sample 50 times simulation results
of each method under the setting of |A| = 5 to vividly show



Fig. 3. Speed of convention emergence with respect to the available actions

(a) WSLpS (b) Q

(c) CL (d) WSLL

Fig. 4. The dynamics of convention emergence with 5 available actions

the dynamics of convention emergence, which is shown in
Fig. 4. Firstly, we can observe that not only WSLL establish
convention faster than other three methods, but also WSLL has
the most stable performance. Secondly, the WSLpS performs
better than other two learning-based approaches under the
setting of 2 available actions, the rationale behind the effec-
tiveness of WSLpS is that the agents stay with their current
strategies with a big probability when their current actions are
consistent with most of their neighbors, and agents can shift
to another ‘right’ action once they are consistent with little
of their neighbors because the actions played by agents are
mutually exclusive when there are only two available actions,
besides, our method even outperforms WSLpS, because the
strategy of ‘shift’ in WSLpS is with a probability, however,
our method is absolute, and with the help of learning, agents
can select the ‘right’ actions as well. Thirdly, when |A| >= 5,
the WSLpS fails to establish conventions, we can observe the
dynamics of WSLpS in Fig. 4 (a), agents can not choose a ap-
propriate action due to blindly searching for new actions when
they can not observe the actions played by their neighbors. The
other two learning-based baseline methods are more robust to
the circumstances of no observation because of the ability of

recording the utility of each action, it should note that the main
difference between WSLL and them is that agents reset their
learning experiences when their current actions are consistent
with most of their neighbors, as discussed in section IV ,the
advantage of resetting learning experiences is to help agents
quickly adjust their strategies when convention seeds conflict,
the agents with learning-based methods may adhere to their
current strategies for a long time, as we can see in Fig. 4 (b)
and (c), there are some lines become horizontal during some
time steps which show the processes of agents coordinate their
strategies when convention seeds conflict, it should mention
that there are 1% simulations fail to establish convention in Q-
learning and Collective learning. For the poor performance of
WSLpS under the setting of large action space and the default
|A| is set as 5 in our experimental settings, therefore, we will
not conduct experiments with WSLpS in the next subsections.

C. Convention emergence under different network topologies

One main factor that will influence the emergence of
conventions is the topologies of MASs, the reality MASs often
form as complex networks, for instance, the web sites usually
form as Scale-free networks. To this end, we compare WSLL
with other baseline methods under three types of complex
network to verify the effectiveness of it, the network types
we choose are a Random network with 10 averaged degree,
a Small-world network with 12 averaged neighbors and 0.1
as rewiring probability, a Scale-free network with 5 as power
law exponent.

As the results shown in Fig. 5, WSLL establishes con-
ventions faster than other methods under all the three types
of network, besides, we can observe that the convergence
time in Random and Scale-free network are almost same, the
similar phenomenon also can be seen in Fig. 2, all lines in
each subfigure always close to each other, these phenomenons
demonstrate that WSLL has a strong stable performance under
various network topologies. Another significant phenomenon
is that Q-learning and Collective learning fail to establish
conventions under the Small-world network which further
verifies the necessity of resetting the learning experience
for agents coordinate their strategies when convention seeds
conflict, agents tend to cluster in Small-world networks and
hence are more likely to form different convention seeds in
each cluster, agents may take a long time or even fail to adjust
their strategies when their action seeds conflict with the agents
in other clusters, in this case, agents with WSLL can quickly
shift their strategies.

D. The influence of population size on Convention emergence

Another issue we concerned is that how the MASs scale
influences the performance of WSLL. To test the adaptability
of WSLL on MASs scale, we vary the MASs size with
200,500,1000,2000 agents. As the results shown in Fig. 6,
WSLL takes fewer time to establish conventions than other two
baseline approaches under all settings, besides, WSLL has the
smallest growth rate among all approaches, as the population
size grows from 200 to 2000, the averaged convergence time



Fig. 5. Speed of convention emergence with respect to network topology

Fig. 6. Speed of convention emergence with respect to population size.

only increases 35%, more importantly, the growth rate reduced
along with the population size increased, when the population
size grows from 1000 to 2000, the growth rate only increases
0.05%, these results indicate that WSLL can be applied to
large scale MASs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study the problem of convention emer-
gence under multi-player synchronous interaction model in
networked MASs, more especially, we focus on the scenario
that agents can not observe the actions played by their neigh-
bors, the only information agents can perceive is whether an
interaction is success or not. A novel action update strat-
egy, Win-Stay-Lose-Learn(WSLL), is proposed. Experimental
results show that our proposed method outperforms other
baseline methods in terms of convergence speed, besides, the
performance of WSLL is very robust under various circum-
stances. In the future, we will try to apply our method to other
interaction models to capture more scenarios.
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