
Multi-Agent Collaborative Exploration through
Graph-based Deep Reinforcement Learning

Tianze Luo∗, Budhitama Subagdja†, Di Wang‡ and Ah-Hwee Tan∗
∗School of Computer Science and Engineering
†ST Engineering-NTU Corporate Laboratory

‡Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY)
Nanyang Technological University

Email: tianze001@e.ntu.edu.sg, budhitama@ntu.edu.sg, wangdi@ntu.edu.sg, asahtan@ntu.edu.sg

Abstract—Autonomous exploration by a single or multiple
agents in an unknown environment leads to various applications
in automation, such as cleaning, search and rescue, etc. Tradi-
tional methods normally take frontier locations and segmented
regions of the environment into account to efficiently allocate
target locations to different agents to visit. They may employ ad
hoc solutions to allocate the task to the agents, but the allocation
may not be efficient. In the literature, few studies focused on
enhancing the traditional methods by applying machine learning
models for agent performance improvement. In this paper, we
propose a graph-based deep reinforcement learning approach to
effectively perform multi-agent exploration. Specifically, we first
design a hierarchical map segmentation method to transform the
environment exploration problem to the graph domain, wherein
each node of the graph corresponds to a segmented region in the
environment and each edge indicates the distance between two
nodes. Subsequently, based on the graph structure, we apply a
Graph Convolutional Network (GCN) to allocate the exploration
target to each agent. Our experiments show that our proposed
model significantly improves the efficiency of map explorations
across varying sizes of collaborative agents over the traditional
methods.

Index Terms—Graph convolutional networks; Reinforcement
learning; Multi-agent map exploration; Multi-robot system

I. INTRODUCTION

Autonomously and efficiently exploring an environment
is one of the fundamental research in autonomous robotics
such as mowing and cleaning [1], [2], search and rescue [3],
reconnaissance [4], mowing, and autonomous deployment [5].
Compared to single agent exploration, exploring environment
bymultiple agents can be advantageous in several aspects, such
as faster task accomplishment and more fault tolerance [6].

However, the core challenge in multi-agent exploration is
how to coordinate the agents behaviors to achieve efficient and
effective exploration. Traditionally, for tackling this problem,
several exploration algorithms based on the map information
have been developed [6]–[8]. In general, a team of robots
share common information and a centralized or decentralized
algorithm control the exploration strategies for the robots.

The research was partially supported by the ST Engineering NTU Corporate
Lab through the NRF corporate lab@university scheme.

The multi-agent map exploration methods evolve as the
development of the idea that dispatches agents to different
areas for exploration, which significantly improves the ex-
ploration efficiency [6], [9]. Methods such as Voronoi multi-
agent map exploration [10] utilized this idea and achieved
fast map exploration. Following the idea, in our paper, we
developed a map segmentation method, which can efficiently
partition the map into separate regions. Therefore, robots can
explore the environment based on the regions in the map. To
achieve effective coordination, agents should be assigned to
separate and non-overlapping regions, so that each agent will
not repeatedly explore regions that have been covered by other
agents. Based on the regions, we further construct a graph
representation of the regions, based on which we can analyse
the map through a topological approach.

On the other hand, applying machine learning to improve
the tasks allocation in multi-agent exploration remains a
difficult problem. Deep learning model like Convolutional
Neural Network (CNN) and Deep Reinforcement Learning
models have been applied in complex domains like video
classification, speech recognition, playing Atari games to name
a few with remarkable performance [11]–[13]. Meanwhile,
directly applying RL on multi-agent map exploration usually
lead to the curse of dimensionality problem [14], i.e. the action
space is huge upon completing map exploration.

In this paper, we present a graph-based multi-agent rein-
forcement learning method to address the multi-agent map
exploration with deep reinforcement learning. Similar to the
traditional approach [10], the environment is partitioned into
separate segments. From the segments, a graph representation
is constructed wherein each node in the graph corresponds to
a segmented region (e.g room, corridor etc.) and every edge
represents a path connecting the regions with a weight value
indicating the path distance. A deep reinforcement learning
model is employed to learn the efficient strategy to allocate
agents to different nodes or regions. We adapt the Deep Q
Network for learning with the graph-based representation and
construct a graph-based multi-agent learning model named
MAG-DQN, for the multi-agent environment exploration prob-



lem.
We conduct experiments showing that the proposed MAG-

DQN can learn superior allocation strategy that outperforms
other baseline models of multi-agent task allocation. We also
find that the information shared among the agents in the
centralized MAG-DQN make learning better compared to a
decentralized version of the model.

II. PROPOSED METHOD

A. Problem Formulation

In this paper, we consider the multi-agent task allocation
problem. Suppose a team of agents enter an environment with
hazards, where the layout is given to the agents. The agents
are required to efficiently detect the entire environment to
search for victims. The problem and settings are formulated
as follows:
Map: The map is two-dimensional grid map, in which each
cell either represents the empty space or obstacle.
Agent: Each agent can freely move on the empty cells, and
can detect its surrounding within s cells. All agents move
continuously until the entire map is detected.
Goal: The ultimate goal is to obtain the minimal time spent,
upon completing detecting the entire environment. As each
agent moves continuously, we can just calculate the traveling
distance per agent, as an indicator for the time spent.

To tackle the problem, we propose a novel graph-based
reinforcement learning method. The method consists of two
parts. In the first part, we present a hierarchical clustering
method to segment the map into small segments, where we
construct a sparse graph based on the segment centres. In the
second part, we apply the MAG-DQN method to automatically
learn the coordination of the agent team. The overall structure
of the model is shown in Figure 1.

B. Hierarchical Clustering for Graph Topology Representa-
tion of a Map

To offer a good graph topology representation of a map,
we propose a novel hierarchical map clustering method to
construct a graph representation for a given map. The graph
representation reflects the map information in a topology
structure, based on which the graph-based reinforcement learn-
ing method learns to assign exploration targets to individual
agents.

Our method starts with randomly sampling n points
f(xi; yi) j i 2 [1; n]g on the empty area of the map, and these
points are to be clustered by two-layer hierarchical Adaptive
Resonance Theory (ART) network.

The ART network [15] is a vector classifier which accepts
an input vector and classifies it into one of the categories
depending upon which of the stored pattern it resembles
the most. Here we adapt the ART architecture [15]: we
modify the matching criteria to be Euclidean distance based.
Each time an input point f(xi; yi) j i 2 [1; n]g is sampled, its
Euclidean distance to every cluster’s centroid is measured.
This is conducted by an ART neural network to find the nearest
cluster (the closest match) under a criteria Cri1. In Cri1, if

the matching value of a cluster is found to be above a certain
threshold (vigilance), the highest one will be selected as the
cluster that include the point which leads to the update of its
centroid. If no match is found (all clusters are too far), a new
cluster is created with the point under the evaluation is set as
the centroid.

Each cluster is represented by f(x̂j ; ŷj) j j 2 [0;m]g, where
x̂ and ŷ are the coordinates of the centroid. If a satisfied
centroid is found, we merge the input with the corresponding
cluster and redefine the centroid. If no match is found, we
create a new node in the lower layer of the ART, which takes
the coordinate of the input point. The clustering from the lower
level layer to the upper-level layer is a similar process but
under matching criteria Cri2. In Cri2, a cluster is also selected
or created according to a vigilance threshold. However, the
selection of an upper level cluster only occurs if there is no
obstruction (e.g walls, doors, obstacles) between the lower
level centroid and the selected upper level central point.

The centroid of a cluster can be updated as follows:

x̂
0

= (N ∗ x̂ + x) = (N + 1) ; ŷ
0

= (N ∗ ŷ + y) = (N + 1) (1)

where x̂
0

and ŷ
0

denote the updated coordinate of the centroids,
and N represents the number of elements within a cluster.
The hierarchical self-organized segmentation structure and
complete algorithm are shown in Figure 2 and Algorithm 1
respectively.

Algorithm 1 Segmentation Algorithm
1: Pre-process the map
2: Detect and mark the doors on the map
3: Randomly drop n dots in the map
4: for i in dots do
5: for j in LowerLevelCluster do
6: if Satisfy C1 then
7: Update Centroid of j and break
8: else
9: Create new LowerLevelCluster and break

10: end if
11: end for
12: end for
13: for i in LowerLevelCluster do
14: for j in UpperLevelCluster do
15: if Satisfy C2 then
16: Update Centroid of j and break
17: else
18: Create new UpperLevelCluster and break
19: end if
20: end for
21: end for
22: Construct the graph G based on the segment centers
23: Return segment centers and graph G

From map to graph representation. After we perform
the clustering, we shall get a set of centroids of regions
f(xi; yi) j i 2 [1; n]g, where xi and yi represent the location
of the region center i on the map. We then compute the path
distance fdi;j ji; j 2 [1; n]g between any two nodes using the
A� method, which is a fast and efficient path planning method
for the two dimensional map. The path distance between any



Fig. 1: The processing pipeline of MAG-DQN.

Fig. 2: The structure of Hierarchical Self-Organized Map Segmen-
tation. Given an input point (xi; yi), if it is matched to the nearest
centroid in the lower layer cluster, the coordinate of that centroid
is updated. If no match is found, a new node will be created. The
matching and updating process from the lower layer cluster to the
upper layer cluster is similar but under a different criteria of matching.

two nodes are taken as the weight of the edge between them.
The weight of the edge is calculated by the equation:

Wi;j =

�
di;j �dmin

dmax�dmin
; di;j <= �;

0; di;j > �:

The � is a adjustable parameter to control the density of
the graph. We set � = 0:15 in our method as we want
relatively sparse graph in which a segment only connects to
its surrounding segments.

Therefore, the map is transformed to an undirected and
weighted attributed graph G = (V, E, W), where V =
fv1; v2; :::; vng is the set of n nodes. E � V � V is the
set of edges, and the weight attribute Wi;j represents the
weight value of the edge (vi; vj). The higher the weight value
wi;j of vertices vi and vj , the nearer the two vertices in the
environment.
Sparsity. The graph G is designed to be a sparse graph for
simplicity purpose. Each node of the graph connects to its
adjacent nodes, and if two nodes are far from each other, there
should be no connection between them.

C. GCN and Multi-agent Graph-based DQN

In this subsection, we present the Multi-agent Graph-based
DQN (MAG-DQN) model, which involves graph convolu-
tional networks and multi-agent deep Q-learning.
Spectral GCN. The spectral graph convolutional networks
(Spectral GCN) performs graph convolutional operations in
the spectral domain [16].

Firstly, we compute the normalized Laplacian matrix of the
graph G by the equation:

L = I�D�1=2WD�1=2

Where I is the n�n identity matrix and D is an n�n diagonal
matrix where Di;j =

P
Wi;j .

Since the graph Laplacian L is a real positive semi-definite
matrix, we can compute the a set of orthonormal eigen-
vectors fuiji 2 [1; n]g 2 Rn through eigen-decomposition
L = U�UT , where U = [u0; :::; un�1] 2 Rn�n is the the
set of eigenvectors, also Known as the Fourier basis for the
graph Laplacian. � = diag([�0; :::; �n�1]) 2 Rn�n is the
diagonalized real non-negative eigenvalues, corresponding to
eigenvectors.

We follow the spectral convolutions on graphs method
[16], where the localized convolutional filters are defined in
Equation 2:

g� (�) =

K�1X
k=0

�kTk

�
~�
�

(2)

Tk(x); k = [0; :::;K � 1] is the kth order Chebyshev poli-
nomial Tk+1(x) = 2xTk(x) � Tk�1(x), which defines the
k-hop convolutional filters. The convolutional operation with
normalization can be defined in Equation 3:

y = g�(L)x =

K�1X
k=0

�kTk(~�)x (3)

where the input vector x is the value of each node of the
graph G , and ~� = 2�=�max� In is the normalized diagonal
matrix. In the following MAG-DQN method, the input vector
x is represented by the state vector s.

(a) (b) (c) (d)

Fig. 3: Figure (a) to (c) shows the map environments for the
experiments. (d) The graph generated by the hierarchical clustering
from (a) (stars represent segment centers).



Multi-agent deep Q-learning The deep Q-learning, also
known as DQN is a famous deep reinforcement learning
method, and has been applied in multiple agents environments
[17], [18]. DQN usually makes use of the CNN to predict the
action-value given a state input and based on the Bellman
equation, the Q value function for any agent at state s with
action a can be written recursively as Q�(s; a) = Es[r(s; a)+

Ea0 ��[Q�(s

0
; a

0
)]]. The loss function for the agent can be

therefore derived as: L(�) = E(s;a;r;s0)[r + 
max
a

0
Q(s

0
; a

0
; ~�)−

Q(s; a; �)]

We consider multi-agent DQN on the graph G, in which
the system involves n agents and each agent i can obtain
its state si;t at time t. At each given state s for agent i,
we compute the Q value by considering other agents actions
A = [a0; :::; ai�1; ai+1; :::; an�1], and A is integrated into
state s for computing Q�i

i (si; ai) value for agent i. Here,
Q(si; ai) = F (G; si; ai), where F denotes the GCN. The
state si observed by the agent i is the set of nodes’ states,
which contain whether the nodes are unexplored, explored,
occupied by other agents or occupied by the current agent i.
The optimized goal is to minimize the loss function for each
agent in the agent team
L(�) =

Pn
i=1 E(si;ai;ri;s

0
i)[ri + 
max

a
0
i

Qi(s
0
i; a

0
i;

~�i) − Qi(si; ai; �i)].

In this method, each agent i equips an individual GCN to
compute its own Qi(si; ai; �i) value, and the goal for each
agent is to obtain its own optimal Q value function. The model
can be categorized as the decentralized learning model.

Centralized learning and decentralized action.
The limitation of the decentralized learning method is that

by optimizing the performance of each agent may not achieve
optimal results for the overall agent team. Therefore, consider
the agent team as a whole

We consider each agent in the team shares the same learning
system, i.e. Q-value network, which is updated in a centralized
basis by considering all the agents’ performance:

L(�) = E(si;ai;ri;s
0
i;i�n)[r + 
max

a
0
Q(i; s

0
i; a

0
i;

~� −Q(i; si; ai; �))] (4)

In this way, the system can learn from all the agents’ expe-
rience, and obtain better performance than the decentralized
learning system. The detailed multi-agent Q-learning algo-
rithm is explained in the Algorithm 2.

III. EXPERIMENTS

In this section, we describe our experiments on multi-agent
map exploration using MAG-DQN, compared to frontier-
based method, graph-based greedy method and graph-based
Hungarian method.

A. Environment
To evaluate our proposed method, we use the real-world

indoor maps from the ROS room dataset [19], which is a
publicly available data set. Examples of maps used in the
experiments are shown in Figure 3.

The map is presented as a grid-based map, which is stored
as an n�m matrix, where n is the height and m is the length.
Each cell in the grid is assigned to one of the following states:

Algorithm 2 MAG-DQN
1: Initialize experience replay memory M to capacity N
2: Initialize Graph G
3: for episode e = 1 to M do
4: for step t = 1 to T do
5: for agent i = 1 to N do
6: Construct state s
7: With probability � select random node v ∈ G as action ai;t
8: Otherwise select ai;t = arg maxQ(st; at)
9: Execute action ai;t and update state st+1

10: Store transition (st; ai;t; rt; st+1) to memory
11: Sample random minibatch B of transition (sj ; ai;j ; rj ; sj+1)

from M
12: Update � by SGD for B with equation (4)
13: end for
14: end for
15: end for
16: Return �

� Unexplored: This cell has not been explored by any
agent.

� Obstacle: This cell is occupied by obstacles that agent
cannot pass.

� Explored: This cell is explored by at least one agent.

In the experiment, we assume each agent is equipped with
a 360� Lidar with the radius r = 10 cells, such that during
the exploration, each robot can explore the local area within
a radius of r in one step. Map (a) has the size of 145 � 122
cells, map (b) has the size of 60�180 cells, and map (c)’s size
is 107 � 115 cells. Based on this environment configuration,
our proposed model constructs the graphs from the maps and
performs multi-agent exploration training.

As for generating graph from a map, the nodes of the graph
represent the segment centres, and each edge of the graph
represents the path and the distance between two nodes. Figure
3 (d) shows an example of generating segment centres using
the hierarchical segmentation methods as described in Section
3.1.

B. Experimental Settings

We implement the MAG-DQN method and conduct experi-
ments on the four maps in Figure 3. For each map, we conduct
experiments with one to ten agents. We conduct experiments
with various parameter settings, and choose the following
parameter values:

Hierarchical clustering and graph building. We apply
�= 0.05, �= 0.8 and 
= 0.15 for the hierarchical clustering
method in Algorithm 1. 
 is the main parameter to adjust the
size of the segments. Here we take 
 = 0:15, so that under the
pre-defined sensing range, when a robot moves to a segment
center, it is able to explore the whole segment.

MAG-DQN settings The parameter settings for MAG-DQN
are as follows. Learning rate: 0.01, Gamma: 0.7, and epsilon
greedy: decay from 0.95 to 0.05 in 3000 episodes. Each
episode contains at most 100 steps. If within 100 step, the
agent team has not completely explored the whole graph, the
episode is forced to stop.




