
Running Reinforcement Learning Agents on GPU for Many Simulations of
Two-Person Simultaneous Games

Koichi Moriyama∗‡, Yoshiya Kurogi∗, Atsuko Mutoh∗, Tohgoroh Matsui†, and Nobuhiro Inuzuka∗
∗Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan

†Department of Clinical Engineering, Chubu University, Kasugai, Aichi, Japan
‡Email: moriyama.koichi@nitech.ac.jp

Abstract—It is desirable for multi-agent simulation to be run
in parallel; if many agents run simultaneously, the total run
time is reduced. It is popular to use GPGPU technology as
an inexpensive parallelizing approach in simulation, but the
“agents” runnable on GPU were simple, rule-based ones like
elements in a scientific simulation. This work implements more
complicated, learning agents on GPU. We consider an environ-
ment where many reinforcement learning agents learning their
behavior in an iterated two-person simultaneous game while
changing peers. It is necessary to run many simulations in
each of which a pair of agents play the game. In this work, we
implement on GPU the simulations where the agents learn with
reinforcement learning and compare two methods assigning the
simulations to GPU cores.

Index Terms—Reinforcement Learning, Multi-agent Based
Simulation, GPGPU, High Performance Computing.

1. Introduction

In multi-agent simulations, computation time is increas-
ing as the number of agents is increasing. Researchers
are trying to accelerate multi-agent simulations by running
in parallel on a computer cluster that consists of many
computers connected with a high speed network. The idea
is simple; if many agents can run simultaneously, the total
run time can be reduced. However, it is too expensive to be
widely used.

On the other hand, general purpose GPU (GPGPU) tech-
nology has been widely used as an inexpensive parallelizing
approach. It uses graphics processing units (GPUs) apt at
parallel computing for general purpose computation. It is
more affordable than computer clusters, but the “agents”
runnable on GPU were simple, rule-based ones like elements
in a scientific simulation.

This work investigates GPGPU technology in a multi-
agent simulation where more complicated agents run on

This work was partly supported by JSPS KAKENHI Grant Number
JP16K00302 and JP19K12118, the Hori Sciences & Arts Foundation, and
Kayamori Foundation of Informational Science Advancement.
Y. Kurogi is currently with Capcom Co. Ltd. Tokyo Branch, Tokyo, Japan
after his graduation. Capcom is not related to this work at all.

GPU. We consider an environment where many reinforce-
ment learning (RL) agents learn their behavior in an iterated
two-person simultaneous game while changing peers. The
agents have their own appraisal mechanisms that will evolve
using an accumulated payoff after playing the game with
all other agents [1], [2]. In this work, we investigate how
the accumulated payoff is efficiently obtained by running
simulations on GPU where the agents learn with RL, and
propose two ways how we assign the simulations to GPU
cores.

2. Background

2.1. Multi-agent Based Simulation

Multi-agent based simulation (MABS) models and sim-
ulates a target environment by behaviors of individuals [3],
[4]. It is compared to object-oriented simulation (OOS),
but there is no clear border between them. Davidsson [3]
discussed the difference between them using six dimensions
including proactiveness and adaptivity. In OOS, individuals
are reactive and static, which means that their behaviors are
controlled by fixed rules. On the other hand, MABS mainly
targets more complex systems like (collective) human be-
haviors [4] that are proactive and temporally variable due to
learning and adaptation of individuals.

Since one of main problems of simulation is scalability,
researchers want to run it in parallel. GPGPU technology
has been used in both OOS and MABS. In the early days
of using GPU in MABS, it was used for running agents on
GPU in a domain-specific simulation, e.g., [5], [6]. However,
agents in the simulation were reactive and static like objects
in OOS. In particular, the adaptivity was not considered at
all.

Generic MABS on GPU is challenging due to difficulties
such as requiring special programming skills. In fact, there
are only several generic parallel MABS platforms all of
which run on computer clusters [7]. Nowadays, if we use
GPU to run MABS with complicated agents, it is recom-
mended that it is run on a hybrid system where only the
environment is on GPU while the agents are on CPU [8].

2.2. GPU and GPGPU

GPU is a processor dedicated to real-time image pro-
cessing that calculates hundreds of thousands vertices and
changes colors of millions of pixels on the screen simultane-
ously. GPU has to do (relatively) simple calculations many
times; therefore it has much more computing cores1 than
CPU and runs them in parallel.

GPU uses SIMT (single instruction, multiple threads)
architecture that processes multiple threads with a single
instruction. The number of threads sharing an instruction,
called warp or wavefront, is specified by the GPU archi-
tecture. It has a major weakness: If there is a conditional
statement that changes a process with respect to each status,
every core has to run all codes in the statement and choose
a result corresponding to the status. It results in increase of
total run time; hence the programs running on GPU should
have few conditional/loop statements.

The parallel computing performance of GPU can be used
in other computation as well as graphics. In the late 2000s,
it became common that GPU was used for general purpose
computation. It is because GPGPU computation frameworks
were released. There are two major frameworks: CUDA2

and OpenCL3. CUDA works only on GPUs of NVIDIA
corporation, but OpenCL works on many kinds of processors
including AMD GPUs and Intel onboard GPUs as well as
NVIDIA’s. Due to its flexibility, this work uses OpenCL.

OpenCL uses an n-dimensional thread space where
1 ≤ n ≤ 3. Work-item is the smallest unit in the thread
space where a GPU program called kernel runs. We call a
work-item a thread hereafter. Work-group is a unit consisting
of several work-items running simultaneously sharing a
memory space.

3. Simulation Target

This work implements on GPU a multi-agent simula-
tion where RL agents run. The environment used here is
that in our previous works where many RL agents learned
their behavior in an iterated prisoner’s dilemma (PD) game
while changing peers. We proposed utility-based Q-learning
agents [9] that did Q-learning [10] using subjective utilities
instead of given rewards, which were derived from the
rewards using an appraisal mechanism of the agent. After
that we investigated what appraisal mechanisms appeared
by evolutionary computation using genetic algorithm (GA)
in the environment [1], [2].

3.1. Prisoner’s Dilemma Game

A PD game [11], [12] is a two-person two-action simul-
taneous game shown by a payoff matrix (Table 1). Two play-
ers called “Row” and “Column” simultaneously choose their

1. Precisely, they should be called “processing elements”, but we use the
term “core(s)” instead in this paper.

2. https://developer.nvidia.com/cuda-toolkit
3. https://www.khronos.org/opencl/

actions from rows and columns of the matrix, respectively.
The two actions are respectively called C (cooperation) and
D (defection). After choosing his/her action, each player
obtains a payoff T , R, P , or S in the matrix. For example,
when Row chooses C and Column chooses D, they obtain
payoffs S and T , respectively.

TABLE 1. PRISONER’S DILEMMA PAYOFFS

Row \ Column C D
C R,R S, T
D T, S P, P

PD has the following relations among the payoffs:
T > R > P > S. Under these relations, each player
obtains a larger payoff whenever choosing D regardless of
the opponent’s action. As a result, both players choose D
and obtain P . However, it is more desirable for them to
choose C mutually and obtain R (> P).

3.2. Utility-Based Q-learning

A Q-learning agent [10] has an action value function
Q showing an estimated expected return afterward. Q is
updated by the following rule using the current and the next
states st, st+1 ∈ S, the action at ∈ A(st), and the given
reward rt+1. Note that S is a set of possible states, A(s) is
a set of available actions in a state s, and α, γ are parameters.

Qt+1(s, a) =

{
Qt(st, at) + αδt if s = st, a = at,

Qt(s, a) otherwise,
(1)

δt ≡ rt+1 + γ max
a′∈A(st+1)

Qt(st+1, a
′)−Qt(st, at). (2)

A utility-based Q-learning agent [9] internally has an
appraisal mechanism that derives subjective utilities from
given rewards, and uses them as rewards of Q-learning. In
other words, δt is changed to the following:

δt ≡ u(rt+1) + γ max
a′∈A(st+1)

Qt(st+1, a
′)−Qt(st, at), (3)

where u(rt+1) is the subjective utility derived from a func-
tion of given reward rt+1. Note that the utility-deriving
function u is arbitrary and may depend on other variables
as well as the immediate reward rt+1.

3.3. Evolution of Utility-Deriving Functions

Since the utility-deriving function u is arbitrary, we in-
vestigated what functions appeared from evolutionary com-
putation [1], [2]. We assumed that the utility-deriving func-
tion was a cubic function of the payoff r:

u(r) ≡ ar3 + br2 + cr + d,

and evolved the real number coefficients a, b, c, d with the
simple GA [13] where the fitness was the sum of received
payoffs (i.e., not utilities) of the agent.

The simulation algorithm was as follows:

1) Generate N utility-based Q-learning agents from
N chromosomes showing the coefficients created
randomly.

2) For all pairs of N agents, they play a PD game and
update their action-value functions M times.

3) Rank all agents by their fitness.
4) Run the GA to generate N next-generation agents

based on the ranking.
5) Unless the end condition is satisfied, back to 2.

Note that, in the process 2, the action-value function each
agent had was initialized when the pair was changed, i.e.,
every pair was independent.

In the process 4, to generate two next-generation agents,
the GA chose two agents, exchanged genes in their chromo-
somes, and mutated genes in the chromosomes. There were
two parameters: the crossover probability pc and the mu-
tation probability pm. pc determined whether the crossover
process would start or not. If satisfied, each gene in the
two chromosomes was exchanged one by one randomly. pm
determined whether each gene would be mutated or not. If
satisfied, x ∼ N(µ, σ) was added to the gene.

4. Implementation

When we run the simulation, the process 2 has to be
run O(N2) times in a generation. As in the previous work
[1], when we set N = 100, M = 1000, and as the
end condition of process 5 the number of generation G
to 10000, it takes more than 20 minutes with a modern
PC server. Note that it gives us only a sample of one
simulation with a certain parameter set. Usually, we have
to run many simulations to discuss the result statistically
and know the effect of parameters. Since the number of
combination of parameters is huge, the whole simulation
time easily becomes several hours, days, or weeks. It is why
we need parallel computation.

The main problem of parallel computation is how we
divide the whole problem into independently runnable parts.
Since the computation time is almost in evaluation of the
individuals, and the target environment can easily be divided
because every pair is independent, we use the master-slave
type parallel model of GA [14]. In the model, one processor,
called master, is responsible for GA operations and control
of the whole process, while other processors, called slaves,
are responsible for evaluation of individuals. First, the mas-
ter assigns all individuals to the slaves and orders every
slave to evaluate the assigned individuals and return their
fitness values to the master. After receiving fitness values of
all individuals, the master conducts the genetic operations
to the individuals to generate the next generation. Note that,
since the master-slave model only divides the evaluation of
individuals into many processors, it gives us the same result
of original GA [14].

GPU has thousands of computing cores, which is much
more than CPU. However, the computation speed of GPU
cores is much less than that of CPU cores. Parallelization is
not free; even if no communication among threads is needed,

creating threads may take non-negligible time. If there is no
processor remaining, threads have to wait for a while until
a processor will be available. Based on the discussion, this
work considers the following two assigning methods having
different levels of parallelization.

4.1. Agent-Based Assignment

Agent-Based Assignment (AA) creates one thread for
an agent, i.e., the number of threads are that of agents. The
thread ID is equal to the ID of agent who owns this thread.
After creating these threads, every thread runs the process 2
of Section 3.3

(
N
2

)
/N = (N − 1)/2 times in average.

Simply let us use a 1-dimensional thread space. As we
saw in Section 2.2, every thread joins in a work-group. It
is known that the number of threads in a work-group, or
work-group size, is good to be set to a multiple of the warp
size, but we want to minimize the work-group size because
the overhead of synchronization after processing and that
of conditional/loop statements may be smaller as the size
is smaller. The threads in this implementation do not need
information sharing nor synchronization during processing.
Then, we set the work-group size is equal to the warp size.
Note that, the total number of threads should be a multiple
of the work-group size. Therefore, we create ⌈N/w⌉ × w
threads where w is the warp size.

In each evaluation process, the owner agent whose ID
is T plays with the opponent whose ID is (T + c) mod N
where c is a counter starting from 1 to ⌈(N − 1)/2⌉. If N
is even, the owner whose ID is ≥ N/2 stops running the
last iteration because the last pair has already been run in
another thread whose owner is the opponent (Fig. 1).

Iteration=
0 1 2 ... N/2−2 N/2−1

Owner=0 (0, 1) (0, 2) (0, 3) ...
(0,

N/2−1)
(0, N/2)

1 (1, 2) (1, 3) (1, 4) ... (1, N/2)
(1,

N/2+1)

...

N/2−1
(N/2−1,

N/2)
(N/2−1,
N/2+1)

(N/2−1,
N/2+2)

...
(N/2−1,

N−2)
(N/2−1,

N−1)

N/2
(N/2,

N/2+1)
(N/2,

N/2+2)
(N/2,

N/2+3)
...

(N/2,
N−1)

(N/2, 0)

...

N−2
(N−2,
N−1)

(N−2, 0) (N−2, 1) ...
(N−2,

N/2−3)
(N−2,

N/2−2)

N−1 (N−1, 0) (N−1, 1) (N−1, 2) ...
(N−1,

N/2−2)
(N−1,

N/2−1)

Figure 1. Agent-based Assignment, when N is even. Each row and column
correspond to a thread and the number of iteration, respectively. Each thread
runs N/2 times, but the cells with crosses indicate these pairs are run in
another thread. For example, the last iteration of owner N/2 is run in the
last iteration of owner 0.

4.2. Pair-Based Assignment

Pair-based assignment (PA) creates one thread for each
pair, i.e., the number of threads are that of pairs in total.

Each thread has an ID that determines which pair is assigned
to the thread. After creating these threads, the evaluation
process 2 in Section 3.3 is run in parallel.

The number of threads becomes
(
N
2

)
= N(N − 1)/2.

Simply let us use a 1-dimensional thread space. From the
same reason of the AA case, we create ⌈N(N−1)/2w⌉×w
threads where w is the warp size.

Next we have to assign a pair to each thread. It is
not trivial to derive a pair from a thread ID T in the
1-dimensional space. All pairs needed to be assigned are
shown in Fig. 2, where N is even for example. We have to
assign a thread to every pair, but it is difficult to calculate
a pair directly from T . Admittedly we can naively assign
a thread one by one from (0, 1) to (N − 2, N − 1), but it
costs due to loop statements.

The difficulty is in the fact that different rows have
different numbers of pairs. It is important to note that we
have to enumerate all pairs but the order of the pairs is not
the matter. Therefore we move some pairs and make it easy
to calculate a pair from T . The result is shown in Fig. 3.
The gray cells in Fig. 2 are moved to fill the empty cells
and consequently all but the last row have N pairs. As we
can see that the row number corresponds to one agent of a
pair in a white cell while the column number corresponds
to one agent of a pair in a gray cell. We can do similarly
when N is odd.

This process is generally described as follows. First we
calculate the coordinate of a cell (Mx,My) from T :

Mx ≡ ⌊T/N⌋,
My ≡ T mod N.

Then, we assign to this thread two agents whose IDs are{
(Mx, Mx +My + 1) if Mx +My + 1 < N

((N − 2)−Mx, My) otherwise.

(0, 1) (0, 2) (0, 3) (0, N−2) (0, N−1)

(1, 2) (1, 3) (1, 4) (1, N−1)

...

(N/2−2,
N/2−1)

(N/2−2,
N/2)

(N/2−2,
N/2+1)

...
(N/2−2,

N−3)
(N/2−2,

N−2)
(N/2−2,

N−1)

(N/2−1,
N/2)

(N/2−1,
N/2+1)

(N/2−1,
N/2+2)

...
(N/2−1,

N−2)
(N/2−1,

N−1)

(N/2,
N/2+1)

(N/2,
N/2+2)

(N/2,
N/2+3)

...
(N/2,
N−1)

...

(N−3,
N−2)

(N−3,
N−1)

(N−2,
N−1)

N−1
Pairs

N−1 Pairs

N/2
Pairs

Figure 2. All pairs that will be assigned to threads, when N is even. Each
number is an ID of an agent, from 0 to N − 1.

5. Experiment

This section evaluates the use of GPGPU technology for
many simulations of multiple RL agents using the above two
assignment methods.

Mx=0 1 2 N−3 N−2 N−1

My=0 (0, 1) (0, 2) (0, 3)
(0,

N−2)
(0,

N−1)
(N−2,
N−1)

1 (1, 2) (1, 3) (1, 4)
(1,

N−1)
(N−3,
N−2)

(N−3,
N−1)

...

N/2−2
(N/2−2,
N/2−1)

(N/2−2,
N/2)

(N/2−2,
N/2+1)

...
(N/2−2,

N−2)
(N/2−2,

N−1)
(N/2,

N/2+1)
...

(N/2,
N−3)

(N/2,
N−2

(N/2,
N−1)

N/2−1
(N/2−1,

N/2)
(N/2−1,
N/2+1)

(N/2−1,
N/2+2)

...
(N/2−1,

N−1)

N Pairs

N/2
Pairs

Figure 3. After moving pairs to empty cells. Mx and My indicate the
coordinates of cells.

The computer used has two Intel Xeon E5-2650 v4 CPU
(24 physical / 48 hyperthreading cores in total) and one
GeForce GTX 1080 GPU (2560 cores). The warp size of
GTX 1080 is 32.

GPU programs are implemented in OpenCL framework,
version 1.2. The host programs are written in C++14,
compiled by GNU GCC 7.2.1 with compile options “-O3
-march=native”. The kernel program is written in
OpenCL C. Note that, since no random number generator is
in OpenCL C specification, we implemented Xorshift 128
bit algorithm in the kernel program. In the host programs,
we used std::mt19937, a mersenne twister engine.

We implemented the following programs: Naive, GPU-
AA, GPU-PA, CPU-AA, and CPU-PA. Naive is a program
running on a single thread of CPU. GPU-AA and GPU-PA
are those explained in Section 4. CPU-AA and CPU-PA are
similar to GPU-AA and GPU-PA, respectively, but they run
on CPU threads instead of GPU. Note that it is known that
C++ standard thread implementation of GNU GCC always
creates new threads instead of using a thread pool where
old threads were stored and reused, while that of some other
compilers like Microsoft C++ uses a thread pool. Since it
takes time to create a new thread, it is unfair for comparison.
Therefore we used an implementation of thread pool instead
of standard threads in CPU-AA and CPU-PA.

All parameters used in the experiment are identical
with the previous work [1], if not otherwise specified. The
number of agents N is 100, the number of iterations of
PD game M is 1000, and the number of generations G is
10000. The payoffs of PD game are as follows: T = 5,
R = 3, P = 1, and S = 0, which satisfy the PD
condition. The utility-based Q-learning parameters are as
follows: α = 0.25 and γ = 0.5. For action selection, the
agent uses ϵ-greedy action selection method that chooses a
random action with probability ϵ, which is set to 0.05. The
crossover and mutation probabilities are set as pc = 0.9 and
pm = 0.01. The mutation value x is derived from N(0, 1).

Note that OpenCL compiles kernels from source files on
the fly, but the compiled kernels are stored as cache files.
We disabled the cache mechanism because we want to time
the whole process from scratch.

5.1. Validity of the Programs

First of all, we confirm that the programs were properly
implemented. Figure 4 shows histograms of average payoffs

of the last generation in 100 runs of each program. We can
see that all programs gave similar results having two peaks
around 1.4 and 2.8. Their heights were also similar. Based
on the results, we conclude that the programs were valid.

Naive

Average Payoff

#
R

u
n

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12
CPU−AA

Average Payoff

#
R

u
n

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12
CPU−PA

Average Payoff

#
R

u
n

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

GPU−AA

Average Payoff

#
R

u
n

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12
GPU−PA

Average Payoff

#
R

u
n

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

Figure 4. Histograms of average payoffs of the last generation in 100 runs
of each program. X-axis shows bins of average payoffs whose width is
0.01, while y-axis shows the number of runs within the bin.

5.2. Run Time

This section compares the programs by the elapsed time
of the above experiment. Table 2 shows the results that
are the average of 100 runs. Naive needed more than 20
minutes, but CPU-AA and CPU-PA needed about two and
six minutes, respectively. GPU-PA was the fastest; it needed
only 20 seconds, but GPU-AA was slower than CPU threads.

TABLE 2. ELAPSED TIME FOR 100 RUNS, WHEN N = 100, M = 1000,
AND G = 10000.

Program Elapsed time (sec.)
Naive 1279.67

CPU-AA 134.14
CPU-PA 246.11
GPU-AA 591.27
GPU-PA 19.82

5.3. Scalability

We see another experiment where the number of agents
N was increased to 200, 300, ..., 20000. We set G = 1
because we only wanted to know the effect of the number
of agents on the evaluation time. Note that the evaluation
was done twice, before and after genetic operations. Also,
since we wanted to know only the processing time, outputs
for consoles and files were stopped.

Figures 5 and 6 depict the relation between the number
of agents and the elapsed time averaged by 10 runs. GPU
needed setup time about one second in every run while CPU
did not. Therefore when the number of agents was small
GPU took more time than CPU. However, after that the
number increased more than 700 for PA and 1500 for AA,
GPU was faster than CPU.

 0

 10

 20

 30

 40

 50

 60

 0 2500 5000 7500 10000 12500 15000 17500 20000

R
u
n
 T

im
e
 (

se
c.

)

#Agent

Naive
CPU-AA
CPU-PA
GPU-AA
GPU-PA

Figure 5. Scalability: The relation between the number of agents and the
elapsed time averaged by 10 runs, when G = 1.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
u
n
 T

im
e
 (

se
c.

)

#Agent

Naive
CPU-AA
CPU-PA
GPU-AA
GPU-PA

Figure 6. Closeup view of Fig. 5.

6. Discussion

Run-time results showed that the programs using multi-
ple threads were obviously faster than the naive one. First
let us see details of these results.

CPU-AA was faster than CPU-PA. Intuitively the pair-
based method seemed faster than the agent-based method
due to the degree of parallelization; but it was not. It may
be because the CPU cores including hyperthreading on the
machine were only 48, which is about a half of N = 100.
That is, both programs fully used CPU cores. The difference
is that CPU-PA created much more threads (N(N −1)/2 =
4950) than CPU-AA (N = 100). As mentioned before, it
costs to create threads. This result shows that the cost is
larger than that of iterations in each thread.

In addition, GPU-AA was 4.4 times slower than CPU-
AA unexpectedly. It is due to the calculation speed of cores.
CPU-AA used 48 CPU cores, which is about a half of GPU
cores GPU-AA used (N = 100). That is, roughly speaking,
a GPU core takes about 4.4 × 2 = 8.8 times longer than a
CPU core; it is plausible.

Next let us see details of results of the scalability experi-
ment. CPU-AA and CPU-PA were clearly faster than Naive,
while CPU-AA was faster than CPU-PA from beginning to
end. It is, as we saw, due to the cost for creating threads. The
result showed that CPU-PA took about 2.4 times more time
than CPU-AA regardless of the number of agents. That is,
creating threads costed 2.4 times more than iteration in this
environment. This cost will be mitigated when the number
of generations G become large, as in the run-time results
(246.11/134.14 ≈ 1.83); this is probably due to the thread
pool. On the other hand, given that CPU-PA was faster
than Naive, the best number of threads probably exists. The
authors speculate that it is 24 or 48, i.e., the number of
physical cores or that of hyperthreading cores, respectively.

GPU programs were much more scalable than CPU
ones. GPU-PA was faster than GPU-AA at the beginning,
but their performance became similar at the end. The reason
GPU-PA was faster than GPU-AA when N ≤ 2500 is
obvious; GPU-PA used all GPU cores while GPU-AA did
not. Also, it is known that GPU performs better if running
threads are more than its cores because when one thread
has to read a memory, GPU can allow another waiting
thread to run its program. Since memory access usually
takes much longer time than computing instructions, the best
performance is given when the number of threads is several
times of that of cores. This is probably why the performance
of GPU-PA and that of GPU-AA became similar at the end;
both programs fully used the GPU at that time. When there
are 15000 agents, GPU-AA uses 15000 threads that is about
6 times of the cores.

There remains a question. It is not clear why the GPU-
PA result fluctuated in N ≥ 8000. When N = 8000, the
number of threads was about 32 millions. The fluctuation
may be caused by such too many threads, but it is difficult
for us to answer the question. It may depend on scheduling
and memory usage in the GPU we cannot know easily.

7. Conclusion

This work investigated the use of GPGPU technology in
MABS. In particular, we implemented a simulation where
RL agents played a PD game and learned their behaviors
iteratively, while their appraisal mechanisms evolved from
accumulated payoffs. In this work, GPU was used in cal-
culation of fitness of the appraisal mechanisms of agents,
i.e., in the process where all agents played a PD game with
all of the others and learned their behavior with RL. Note
that it is more complicated than rule-based agents GPU has
been used in MABS.

We introduced two assignment methods called AA, the
agent-based assignment, and PA, the pair-based assignment.
Intuitively, PA would effectively utilize GPU’s parallel com-
putation performance based on many cores. Indeed PA on
GPU obtained the best performance among five programs;
however, the performance was not different from AA when
the number of agents was huge. It is probably both methods
fully used the GPU in this case.

The environment we considered is only the PD game,
but other two-person simultaneous games can similarly be
used. The number of actions each agent chooses affects the
amount of memory because each agent has to remember
more values of actions and/or states. It may affect the
number of threads GPU can run simultaneously. However, it
is a problem of RL and may be mitigated by memory-saving
methods like function approximation.

On the other hand, the number of players in the game
critically affects the result because it changes the number
of combination of agents drastically. The two proposed
methods differ in the level of parallelization. Thus we will
discuss the appropriate level of parallelization in accordance
with the number of players in a game in the future.

References

[1] K. Moriyama, S. Kurihara, and M. Numao, “Evolving Subjective
Utilities: Prisoner’s Dilemma Game Examples,” in Proc. 10th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2011, pp. 233–240.

[2] M. Miyawaki, K. Moriyama, A. Mutoh, T. Matsui, and N. Inuzuka,
“Evolution Direction of Reward Appraisal in Reinforcement Learn-
ing Agents,” in Proc. 12th KES Symposium on Agent and Multi-
Agent Systems – Technologies and Applications (KES-AMSTA), 2018,
pp. 13–22.

[3] P. Davidsson, “Multi Agent Based Simulation: Beyond Social Simu-
lation,” in Multi-Agent-Based Simulation, S. Moss and P. Davidsson,
Eds. Springer, 2000, pp. 97–107.

[4] E. Bonabeau, “Agent-based modeling: Methods and techniques for
simulating human systems,” Proceedings of the National Academy of
Sciences, vol. 99, pp. 7280–7287, 2002.

[5] K. S. Perumalla and B. G. Aaby, “Data Parallel Execution Chal-
lenges and Runtime Performance of Agent Simulations on GPUs,” in
Proc. 2008 Spring Simulation Multi-Conference (SpringSim), 2008,
pp. 116–123.

[6] U. Erra, B. Frola, V. Scarano, and I. Couzin, “An efficient GPU
implementation for large scale individual-based simulation of col-
lective behavior,” in Proc. 2009 International Workshop on High
Performance Computational Systems Biology (HIBI), 2009, pp. 51–
58.

[7] A. Rousset, B. Herrmann, C. Lang, and L. Philippe, “A survey on
parallel and distributed multi-agent systems for high performance
computing simulations,” Computer Science Review, vol. 22, pp. 27–
46, 2016.

[8] E. Hermellin and F. Michel, “GPU Delegation: Toward a Generic Ap-
proach for Developping MABS using GPU Programming,” in Proc.
15th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2016, pp. 1249–1258.

[9] K. Moriyama, “Utility based Q-learning to facilitate cooperation in
Prisoner’s Dilemma games,” Web Intelligence and Agent Systems,
vol. 7, no. 3, pp. 233–242, 2009.

[10] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, pp. 279–292, 1992.

[11] R. Axelrod, The Evolution of Cooperation. Basic Books, 1984.

[12] W. Poundstone, Prisoner’s Dilemma. Doubleday, 1992.

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, 1989.

[14] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms,” Réseaux et
systèmes répartis, calculateurs parallèles, vol. 10, no. 2, pp. 141–171,
1998.

