
Comfortable Driving by using Deep Inverse
Reinforcement Learning

Daiko Kishikawa
Department of Urban Environment Systems

Chiba University
Chiba, Japan

d.kishikawa@chiba-u.jp

Sachiyo Arai
Department of Urban Environment Systems

Chiba University
Chiba, Japan

sachiyo@faculty.chiba-u.jp

Abstract—Passenger comfort and their safety are pre-requisites
to realizing autonomous driving vehicles. Herein, we define
“comfortable driving” by considering “comfortability”, with
which less physical and mental burden for passengers. Deep
reinforcement learning, which has several applications in the
autonomous driving domain, is an effective approach to achieve
the comfortable driving. Generally, reward function in deep rein-
forcement learning is expressed quantitatively. However, because
obtaining a quantitative expression for comfortable driving is
difficult, there is no guarantee that a reward function can satisfy
“comfortable driving” conditions. Therefore, we propose an
approach to identify reward function that can realize comfortable
driving, using LogReg-IRL, a deep inverse reinforcement learning
method in linearly solvable Markov decision process. With
the constraint that the maximum lateral acceleration does not
exceed a certain threshold value, we could experimentally achieve
“comfortable driving”. Additionally, by calculating the gradient
for the state input of the state-dependent reward function, we
could analyze important states.

Index Terms—autonomous driving, comfortability, deep in-
verse reinforcement learning

I. INTRODUCTION

Autonomous driving is a technology used to drive vehicles
with little or no human input. An analysis by [1] shows
that 90% of traffic accidents are caused by driver error.
This suggests that replacing human driver by an autonomous
driving agent will be able to reduce traffic-related accidents. In
addition to driver safety, it is also important to realize driving
that considers the comfort of passenger, such as less physical
and mental burden for practical application of autonomous
driving technology in manned vehicles. In this study, we
define driving that satisfies these requirements as “comfortable
driving”. At present, commercial autonomous vehicles are
controlled by a rule-based program that defines the appropriate
controls for all possible situations. From the perspective
of achieving robust control, which will enable the vehicle
to drive itself in any environment, a rule-based algorithm is
inappropriate given that the developers must code all possible
scenarios that have to be satisfied.

Recently, reinforcement learning has attracted significant
research attention, particularly in the field of autonomous
driving. In reinforcement learning, the agent, which is the
decision-making entity, learns optimal control through a trial
and error process to maximize the cumulative reward. Deep

reinforcement learning (DRL) is the combination of reinforce-
ment learning and deep learning. Owing to the exceptional
ability of neural networks in feature extraction and function
approximation tasks, DRL has achieved promising results in
complex tasks including autonomous driving [2]. However,
the design of reward function in reinforcement learning is
a difficult problem because the reward function must be the
most succinct, robust, and transferable definition of the task
to be performed [3]. Moreover, there is no guarantee that a
comfortable driving experience can be achieved using a reward
function based on such a quantitative representation. This
may be attributed to the subjective definition of comfortability,
which varies across designers and developers.

Thus, to address the above-mentioned problem, inverse
reinforcement learning (IRL) [4] has emerged as an effec-
tive approach. By observing demonstrations performed by
an expert agent that takes intended actions, IRL estimates
a reward function that enables the agent in reinforcement
learning to imitate the behavior of the expert. Here, ”expert
agent” means a decision-making entity that takes the desired
action to be imitated. Ideally, it is a human driver capable
of performing the desired driving. Several IRL algorithms
were required to update the reward function in the inner-loop
of policy optimization in most of previous studies. Hence,
there exist very limited applications of IRL in the domain
of autonomous driving because the estimated reward function
must be evaluated on a driving simulator using a physical
model, or in an actual car in the real world. Sharifzadeh et al.
used IRL to learn [5]. They applied apprenticeship learning
[3] to deep Q-learning [6]. Our proposed method differs
from their methods in the sense that it uses an IRL method
without updating the estimation of the reward functions using
the inner-loop for achieving comfortable driving.

The remainder of this paper is organized as follows. Section
2 describes preliminaries for the linearly solvable Markov
decision process (LMDP) and LogReg-IRL, which is a deep
inverse reinforcement learning method in LMDP. Section 3
describes our approach to realize comfortable driving using
LogReg-IRL. Section 4 describes the experiments to evaluate
the proposed approach and presents the results. Section 5
then analyzes the results obtained from the experiments in the
previous section. Finally, section 6 concludes the study and

discusses future work.

II. PRELIMINARIES

Let S and A represent a state space and an action space,
respectively. Then, P (s′|s, a) represents the conditional prob-
ability of transitioning to the next state s′ ∈ S when the
action a ∈ A is executed in the current state s ∈ S , and
R(s, a) represents the reward when executing the action a in
the current state s. In the traditional Markov decision process
(MDP) [7], the Bellman equation is expressed as follows:

V (s) = max
a

{
R (s, a) +

∑
s′

p (s′|s, a) γV (s′)

}
(1)

Here, γ is the discount rate (0 < γ ≤ 1). In the above, Eq. (1)
is non-linear because of the max operator. Hence, the only
approach to find its solution is to use an iterative method such
as value iteration.

A. Linearly solvable MDP

Linearly solvable Markov decision process (LMDP) [8] is a
subclass of MDP proposed by Todorov. In LMDP, control u ∈
R|S|, which is a real-valued vector with the same dimension
as the number of states, is substituted for action a in MDP.

There are two assumptions in LMDP. First, the state tran-
sition probability p, i.e., the controlled transition probability,
is represented by the product of the uncontrolled transition
probability p̄ and exp(us). us is the exponentiated vector of
the control about current state s:

p (s′|s,us) = p̄ (s′|s) exp (us) (2)

The uncontrolled probability p̄(s′|s) is the state transition
probability from the current state s to the next state s′ when
control us is not performed. From Eq. (2), if p̄ (s′|s) = 0
then p (s′|s,us) = 0. Therefore, Eq. (2) can also be written as

exp (us) =
p (s′|s,us)

p̄ (s′|s)

us = log
p (s′|s,us)

p̄ (s′|s)
(3)

The second assumption is that the cost ℓ = −R is rep-
resented by the sum of the state-dependent cost q and the
Kullback–Leibler (KL) divergence DKL(p|p̄):

ℓ (s,us) = q (s) +DKL

(
p (s′|s,us)

∣∣∣∣∣∣p̄ (s′|s)) (4)

From the definition of KL divergence and Eq. (3), Eq. (4) can
be written as

ℓ (s,us) = q (s) +
∑
s′

p (s′|s,us)us (5)

Substituting Eqs. (2) and (5) in Eq. (1), we obtain the following

V (s) = q (s) + min
us

[∑
s′

p̄ (s′|s) exp (us) {us + γV (s′)}

]
(6)

Lagrange’s undetermined multipliers method is applied to
remove the min operator from the second term in the right-
hand side of Eq. (6). Lagrange function L is defined as

L
(

us, λs

)
=

∑
s′

p̄ (s′|s) exp (us)
(

us + γV (s′)
)

+ λs

(∑
s′

p̄ (s′|s) exp (us)− 1
)

(7)

where the constraint is given by∑
s′

p̄ (s′|s) exp (us) = 1 (8)

The necessary condition of an extremum with respect to us is
as follows

∂L
∂us

= p̄
(
s′|s

)
exp (us)

(
us + γV

(
s′
))

= 0 (9)

∂L
∂λs

=
∑
s′

p̄
(
s′|s

)
exp (us)− 1 = 0 (10)

The solution u∗
s is

u∗
s = −γV (s′)− log

(∑
s′

p̄ (s′|s) exp {−γV (s′)}
)

(11)

From Eqs. (6), (8), (11)

V (s) = q (s) − log
(∑

s′
p̄
(
s
′|s

)
exp

{
−γV (s

′
)
})

exp {−V (s)} = exp
{
−q (s)

}∑
s′

p̄
(
s
′|s

)
exp

{
−γV (s

′
)
}

(12)

Thus, the min operator is dropped because it is the minimum.
Then, the optimal controlled transition probability p∗ is de-
fined as

p∗ (s′|s) = p̄ (s′|s) exp{−γV (s′)}∑
s′ p̄ (s

′|s) exp {−γV (s′)}
(13)

Rearranging terms of Eq. (12), we obtain

exp {−V (s)}
exp {−q (s)} =

∑
s′

p̄
(
s′|s

)
exp

{
−γV (s′)

}
exp {q(s)− V (s)} =

∑
s′

p̄
(
s′|s

)
exp

{
−γV (s′)

}
(14)

Substituting Eq. (14) in Eq. (13), the following is obtained

p
∗ (

s
′|s

)
=

p̄
(
s′|s

)
exp{−γV (s′)}

exp {q(s) − V (s)}

log
p∗ (

s′|s
)

p̄ (s′|s)
= −q(s) − γV (s

′
) + V (s)

log
p∗ (

s, s′
)

p̄ (s, s′)
= log

p∗ (s)

p̄ (s)
− q(s) − γV (s

′
) + V (s) (15)

From Eq. (15), we can estimate the state-dependent cost q(s)
and state value V (s) by using the density ratio estimation
method.

B. Logistic Regression-Based IRL (LogReg-IRL)
Logistic Regression-Based IRL (LogReg-IRL) [9] is a deep

inverse reinforcement learning method without inner-loop, that
uses using Eq. (15) and the LogReg [10] criterion, which
is the density ratio estimation method using logistic regres-
sion. In Eq. (15), there are two density ratios, p∗(s)/p̄(s)
and p∗(s, s′)/p̄(s, s′). When assigning labels η = 1 and
η = −1 to data that correspond to the optimal controlled
transition probability p∗ and uncontrolled transition probability
p̄, respectively, Bayes’ theorem can be applied to the first term
of the right-hand side in Eq. (15) as follows:

p∗(s)

p̄(s)
=

P(η = 1|s) P(s)
P(η = 1)

{
P(η = −1|s) P(s)

P(η = −1)

}−1

=
P(η = 1|s)
P(η = −1|s)

P(η = −1)

P(η = 1)

ln
p∗(s)

p̄(s)
= ln

P(η = 1|s)
P(η = −1|s)

P(η = −1)

P(η = 1)

= ln
P(η = 1|s)
P(η = −1|s) + ln

P(η = −1)

P(η = 1)
(16)

Then, by using a deep neural network F (s) = fx(s;wx) with
weight wx, a deep logistic regression classifier can be defined
as follows

P(η = 1|s) =
1

1 + exp(−F (s))
(17)

P(η = −1|s) =
1

1 + exp(F (s))
(18)

Substituting Eqs. (17), (18) in the first term of the right-hand
side in Eq. (16), we obtain

ln
P(η = 1|s)
P(η = −1|s)

= ln
1 + exp(F (s))

1 + exp(−F (s))

= ln
exp(F (s))(1 + exp{−F (s)})

1 + exp{−F (s)}
= ln exp(F (s))

= F (s) (19)

By defining “data D∗ that corresponds to the optimal con-
trolled transition probability p∗” as the expert data and “data
D̄ that corresponds to the uncontrolled transition probability
p̄” as the baseline data, the second term of the right-hand side
in Eq. (16) can be estimated by ND̄/ND∗ , which is the ratio
of number of baseline data ND̄ and number of expert data
ND∗ . Thus, the ratio p∗(s)/p̄(s) can be estimated as follows:

ln
p∗(s)

p̄(s)
= F (s) + ln

ND̄

ND∗
(20)

The weight wx of deep logistic regression classifier C(η|s) =
(1 + exp{−ηF (s)})−1 can be estimated by the regularized
negative log-likelihood loss function, as shown below:

J(wx) = − 1

ND̄

ND̄∑
j=1

ln{C(η = −1|s̄j)}

− 1

ND∗

ND∗∑
i=1

ln{C(η = 1|s∗i)}

+
λx

2
||wx||2 (21)

����� �������������	
���
���

�����

������

���������

���������	
��
�����

���������	
��
�����

��������

�	�
����	���

���	�

�	�
����	���

�

Fig. 1. Training deep neural networks in LogReg-IRL.

The last term of the right-hand side in Eq. (21) is the L2-
regularization term with the constant λx.

Next, the second ratio p∗(s,s′)
p̄(s,s′) can be defined from Eqs.

(15), (20) as

log
p∗ (s, s′)

p̄ (s, s′)
= F (s)− q̃(s)− γṼ (s′) + Ṽ (s) + ln

ND̄

ND∗
(22)

where q̃(s) = fq(s;wq) and Ṽ (s) = fV (s;wV) are two deep
neural networks that estimate the state-dependent costs q(s)
and state value V (s), respectively. We define the deep logistic
regression classifier C(η|s, s′) as

C(η|s, s′) = 1

1 + exp(−η{F (s)− q̃(s)− γṼ (s′) + Ṽ (s)})
(23)

such that weights wq and wV can be estimated using Eqs.
(21), (23).

III. APPROACH

In this section, we describe an approach to achieve com-
fortable driving using LogReg-IRL. Our approach consists of
the following two steps.

A. Estimating state-dependent cost and state value for com-
fortable driving by LogReg-IRL

First, we train three networks in LogReg-IRL; the density
ratio network F (s), state-dependent cost network q̃(s), and
state value network Ṽ (s). As shown in Fig. 1, training
uses current state s and next state s′, which are sampled
randomly from expert trajectories that satisfy conditions for
comfortable driving and baseline trajectories that do not satisfy
these conditions.

B. Achieving comfortable driving using shaped reward
Then, we calculate shaped reward r(s, s′), which is based

on the theory of reward shaping [11], by using the estimated
q̃(s) and Ṽ (s) as follows

r(s, s′) = −
{
q̃(s) + γṼ (s′)− Ṽ (s)

}
(24)

Here, r is used for training the agent in reinforcement learning
as shown in Fig. 2.

Fig. 2. Training of autonomous driving using shaped reward.

Fig. 3. Course of TORCS used in this experiment.

IV. EXPERIMENTS

A. Experiment settings

The proposed method was validated using a straight driving
experiment. We used Deep Deterministic Policy Gradient
(DDPG) [12] in TORCS (The Open Racing Car Simulator)
[13] , which is an open source driving simulator. In this
validation, we utilize the 600-m straight driving task that uses
the course shown in Fig. 3.

A total of 31 sensors were used as state inputs (shown
in Table 1) from among 79 dimensions prepared in TORCS.
To handle straight driving in the experiment, one-dimensional
steering operation was used as an action output.

Fig. 4. track(19 dim.); red lines represent sensors.

Fig. 5. Lateral acceleration in expert trajectory.

Fig. 6. Lateral acceleration in baseline trajectory.

From an experimental perspective, for the condition of
comfortable driving, the maximum allowed lateral acceleration
during driving was less than 0.3 g. This was based on a study
[14] that suggested that passengers experience discomfort or
fear when the lateral acceleration exceeds 0.3 g.

B. Generating trajectories

First, we trained the DDPG agent using the reward func-
tion developed in a previous study [15]. By learning 7000
episodes, ten models were obtained that satisfied the condi-
tion of comfortable driving. For each model obtained, two
trajectories were generated by adding noise of different ranges
of uniform distribution to the action output; ±0.01 for expert
trajectories and ±0.2 for baseline trajectories. Figs. 5 and
6 illustrate an example lateral acceleration when traveling

TABLE I
THE 31 SENSORS USED IN THIS STUDY.

sensor range unit description
angle [−π,+π] [rad] angle of car
gear −1, 0, 1, 2, 3, 4, 5, 6 - current gear
rpm [0,+∞) [rpm] number of rotations

of engine
speedX [−∞,+∞] [km/h] X-axis speed
speedY [−∞,+∞] [km/h] Y-axis speed
speedZ [−∞,+∞] [km/h] Z-axis speed

track1-19 [0, 200] [m] distance
(19 dim.) to wall (Fig. 4)
trackPos [−1 + 1] - displacement

from center of road
wheelSpinVel [0,+∞] [rad/s] speed of

(4 dim.) four wheels
z [−∞,+∞] [m] displacement

from center of gravity

Fig. 7. Lateral acceleration achieved during driving.

in expert trajectory and baseline trajectory. In Figs. 5 and
6, the horizontal axis (“distRaced”) indicates the distance
travelled, the vertical axis (“Y acceleration”) indicates the
lateral acceleration, and the red line indicates the condition
of 0.3 g.

C. Training networks of LogReg-IRL

Next, the networks of LogReg-IRL were trained using the
generated trajectories. Multilayer perceptron, which comprises
one input layer, one output layer, and two hidden layers, was
used as the network. The number of inputs and outputs of
each layer was (31, 24), (24, 12), (12, 6), and (6, 1). We
used a scaled exponential linear unit [16] as the activation
function. To prevent over-fitting, we applied dropout with
probabilities of 20% and 50% to the input layer and the hidden
layer, respectively.

D. Learning automatic driving using shaped reward

Finally, we trained the DDPG agent in the TORCS envi-
ronment by using the shaped reward function r(s, s′), which
is obtained by using estimated q̃(s) and Ṽ (s) from Eq. (24).
The lateral acceleration of the model obtained by r is shown
in Fig. 7. In Fig. 7, the horizontal axis indicates the travel
distance, the vertical axis indicates the lateral acceleration, and
the red line indicates the condition of 0.3 g. The maximum
lateral acceleration of 0.01 g during satisfied the set conditions
for comfortable driving. Therefore, LogReg-IRL was able
to estimate the reward function that can achieve comfortable
driving.

V. ANALYSES

A. Analysis of the density ratio network in LogReg-IRL

We examined how the density ratio network F (s) =
fx(s;wx), which plays an important role in learning of
LogReg-IRL, was trained. Using F (s) as a deep logistic
regression classifier C(η|s) = (1 + exp{−ηF (s)})−1, we
tested whether the expert and baseline trajectories generated
using the approach described in in Section 4.2 were properly
classified. The results are summarized in Table II. We evalu-
ated the performance of the classifier based on the following
seven indices.

TABLE II
CONFUSION MATRIX.

True sumExpert Baseline

Predicted Expert 80131 444 80575
Baseline 52474 141963 194437

sum 132605 142407 275012

TABLE III
CALCULATED VALUES OF THE SEVEN INDICES.

Index Value
Accuracy 80.76%

Recall 60.43%
Precision 99.45%

Specificity 73.01%
F-score 75.18%

False baseline rate 27.00%
False expert rate 0.55%

• Accuracy Pac · · · Probability of classifying an expert as
an expert and a baseline as a baseline.

• Recall Pre · · · Probability of classifying an actual expert
as an expert.

• Precision Ppr · · · Probability of being actually an expert
among data classified as an expert.

• Specificity Psp · · · Probability of being actually baseline
among data classified as baseline.

• F-score f · · · Harmonic mean of recall and precision.
• False baseline rate Pb̄ · · · Probability of classifying an

expert as a baseline.
• False expert rate Pπ̄ · · · Probability of classifying a

baseline as an expert.
Let Nπ̃=π be the number of experts classified as experts, Nπ̃=b
be the number of baselines classified as experts, Nb̃=π be the
number of experts classified as baselines, and Nb̃=b be the
number of baselines classified as baselines. Then, each index
can be estimated using the following :

Pac =
Nπ̃=π +Nb̃=b

Nπ̃=π +Nπ̃=b +Nb̃=π +Nb̃=b

Pre =
Nπ̃=π

Nπ̃=π +Nb̃=π

,Ppr =
Nπ̃=π

Nπ̃=π +Nπ̃=b

Psp =
Nb̃=b

Nπ̃=b +Nb̃=b

f =
2

1
Pre

+ 1
Ppr

Pb̄ =
Nb̃=π

Nπ̃=π +Nb̃=π

,Pπ̄ =
Nπ̃=b

Nπ̃=b +Nb̃=b

Table III lists the values of the seven indices calculated
from the confusion matrix. In general, there exists a trade-
off relationship between the precision rate and the recall rate.
From the results in Table III, the accuracy rate is extremely
high compared with the recall rate, and the false expert rate is
extremely low. Therefore, learning can be said to have been
performed such that the baseline was not erroneously classified
as an expert.

Fig. 8. Histogram of the gradient of q̃(s) with respect to the state input s.

B. Analysis of the gradient of q̃(s)

Next, for the state-dependent cost network q̃(s), we calcu-
lated the gradient ∂q̃(s)/∂s, which is defined as the amount
of change in the output value of q̃(s) with respect to slight
changes in the state input s, and investigated its distribution. It
was found that the larger the value of the gradient, the greater
the change in the reward for the change in the state input; in
other words, for larger values of gradient, a stronger effect on
the reward can be expected. The results are shown in Fig. 8.

We observed a tendency, wherein a positive gradient is
distributed along “speedZ”, which is the speed in the Z
direction, and “track10”, which is the distance between the
vehicle and the end of the course with respect to the front
direction. This tendency will increase the distance between
the front end and the end of the course, thereby reducing the
possibility of course-out. Moreover, “speedZ” can also reduce
the possibility of the course-out as it avoids deceleration
along the Z-direction, which occurs when going out of course.
We also observed a tendency for negative gradients to be
distributed in “track9”, which is the distance to the course
end 10 degrees to the left, with respect to the front direction.
A similar tendency was also observed between “track11”
to “track19”, which is the distance to the right course end
with respect to the front direction. This distribution may be
attributed to the fact that the reward corresponding to the
position of the vehicle was estimated from the distance to
the course end on the right side. The course used in the
experiment has a gentle Z-shaped curve. Therefore, if the
agent does not steer the vehicle, the vehicle will collide with
the left wall of the course in the first half of the 600 m section.
Therefore, the reward to steer to the right of the course was
estimated accordingly.

VI. CONCLUSION

In this study, we focused on defining the reward function
that can realize comfortable driving in reinforcement learning.
Therefore, we proposed a novel method to realize safe driving

by using the reward estimated by LogReg-IRL. The results
of the experiments suggest that we were able to achieve
comfortable driving using LogReg-IRL. Further, by analyzing
the gradient of the estimated state-dependent cost q̃(s), we
analyzed the state inputs that are affected when calculating
the reward. Although the condition of comfortable driving
(maximum lateral acceleration less than 0.3 g) was experi-
mentally set, this condition can be arbitrarily set as long as a
trajectory satisfying the condition can be generated.

Unlike several previous inverse reinforcement learning
methods, in addition to expert trajectories, LogReg-IRL also
requires baseline trajectories that do not satisfy the condition.
Moreover, the learning performance of LogReg-IRL is greatly
dependent on baseline trajectories, which is a major concern.
As future work, we intend to develop a method that is less
affected by the property of the baseline trajectory.

REFERENCES

[1] National Highway Traffic Safety Administration, “Critical Reasons for
Crashes Investigated in the National Motor Vehicle Crash Causation
Survey,” 2015.

[2] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to Drive in a Day,” arXiv
preprint arXiv:1807.00412, 2018.

[3] P. Abbeel, A. Y. Ng, “Apprenticeship Learning via Inverse Reinforce-
ment Learning,” Proceedings of the 21st International Conference on
Machine Learning, pp. 1-8, 2004.

[4] A. Y. Ng, S. Russell, “Algorithms for Inverse Reinforcement Learning,”
Proceedings of the 17th International Conference on Machine Learning,
pp. 663-670, 2000.

[5] S. Sharifzadeh, I. Chiotellis, R. Triebel, and D. Cremers, “Learning to
Drive using Inverse Reinforcement Learning and Deep Q-Networks,”
arXiv preprint arXiv:1612.03653, 2016.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg and D. Hassabis, “Human-level control through deep
reinforcement learning,” Nature 518 (7540), pp. 529-533, 2015.

[7] R. Bellman, “Dynamic Programming,” Princeton University Press, 1957.
[8] E. Todorov, “Linearly-solvable Markov decision problems,” Advances

in Neural Information Processing Systems, pp. 1369-1376, 2006.
[9] E. Uchibe, “Model-Free Deep Inverse Reinforcement Learning by

Logistic Regression,” Neural Processing Letters, Vol. 47, Issue 3, pp.
891-905, 2017.

[10] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative Learning for
Differing Training and Test Distributions,” Proceedings of the 24th
International Conference on Machine Learning, pp. 81-88, 2007.

[11] A. Y. Ng, D. Harada, and S. Russell, “Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping,” Proceed-
ings of the 16th International Conference on Machine Learning, Vol. 99,
pp. 278-287, 1999.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[13] B. Wymann, et al. , “TORCS, The Open Racing Car Simulator,”
http://torcs.sourceforge.net.

[14] K. Nasukawa, Y. Miyashita, and M. Shiokawa, “Efficiency Tests for
Running: Third Revised Edition,” Sankaido Publishing, p. 54, 1999.

[15] S. Kitamura, S. Ishikawa, and S. Arai, “Filtering Environmental Infor-
mation for Automatic Driving in Urban Area,” Proceedings of the 32nd
Annual Conference of the Japanese Society for Artificial Intelligence,
2018.

[16] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
Normalizing Neural Networks,” In Advances in Neural Information
Processing Systems, pp. 971-980, 2017.

